Lecture 07: Lovász Local Lemma and Moser-Tardos Algorithm

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ Lecture 07: Lovász Local Lemma and Moser-Tardos Algori

э

Lovász Local Lemma

- Let $\{X_1, \ldots, X_m\}$ be independent random variables
- Let {A₁,..., A_n} be events that are completely determined by evaluations of (X₁,..., X_n)
- Intuition: A_is are bad events and we are interested in avoiding all of them

Theorem (Lovász Local Lemma)

Let $\Pr[A_i] \leq p < 1$ and each event A_i is independent of all but at most d of the other A_j events. If $ep(d + 1) \leq 1$, then

$$\Pr\left[\bigwedge_{i=1}^{n} \overline{A_{i}}\right] > 0$$

The condition $ep(d+1) \leq 1$ can also be replaced with $4pd \leq 1$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

Let φ be a k-SAT formula with m variables and each variable occurs in at most $2^{k-2}/k$ clauses. Then φ is satisfiable.

- Consider a uniform random assignment of $X_j \stackrel{s}{\leftarrow} \{\mathsf{T},\mathsf{F}\}$
- Let there be *n* clauses and *A_i* represent the event that clause *i* is *not* satisfied
- We have $\Pr[A_i] = 2^{-k} =: p$
- And, $d \leq k \cdot 2^{k-2}/k$
- Then, $4pd \leqslant 1$
- Therefore, $\Pr[\wedge_i \overline{A_i}] > 0$ and, consequently, there exists a satisfying assignment

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

Let G be a graph with maximum degree Δ . There exists a valid coloring of G with $C \ge 8(\Delta - 1)$ colors.

- For every edge e define A_e as the event that both vertices receive identical color
- Consider a uniformly random coloring
- $\Pr[A_e] = 1/C := p$
- $d \leq 2(\Delta 1)$
- We have $4pd \leqslant 1$ when $C \geqslant 8(\Delta 1)$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

What is the bound when we use the following new sets of events: A_v is the event that some vertex in the neighborhood of v receives the same color as v.

•
$$\Pr[A_v] = \left(1 - \left(1 - \frac{1}{C}\right)^{\Delta}\right) =: p$$

• $d = \Delta$

Think: When is $4pd \leq 1$?

Let \mathcal{G} be a graph where the events A_i are the vertices. We draw an edge (A_i, A_i) if A_i depends on A_i . This graph is called the dependency graph.

Theorem (Generalized Lovász Local Lemma)

If there exists a mapping $x: [m] \to (0, 1)$ such that: For all $1 \leq i \leq n$, we have

> $\Pr[A_i] \leq x_i \prod (1-x_j)$ $i \in \Gamma_i$

Then $\Pr[\wedge_i A_i] \ge \prod_i (1-x_i) > 0$.

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) = (回 > (回 >)) = (回 > (回 >)) = (\Pi > (\cup >)) = (\Pi > (\square >)) = (\Pi > (Lecture 07: Lovász Local Lemma and Moser-Tardos Algori

~ ~ ~

Trivially follows from the following technical lemma:

Lemma

For any $S \subseteq [n]$, we have: $\Pr[A_i | \wedge_{i \in S} \overline{A_i}] \leq x_i$

Because:

$$egin{aligned} &\Pr[\wedge_i \overline{A_i}] = \prod_i \Pr[\overline{A_i} | \wedge_{j < i} \overline{A_j}] \ &= \prod_i \left(1 - \Pr[A_i] | \wedge_{j < i} \overline{A_j}]
ight) \ &\geqslant \prod_i (1 - x_i) > 0 \end{aligned}$$

・ロン ・雪 と ・ ヨ と ・ ヨ と Lecture 07: Lovász Local Lemma and Moser-Tardos Algori

э

Proof of the Technical Lemma

- We proceed by induction on |S|
- Assume that for all S such that |S| < t the hypothesis is true
- Consider an S such that |S| = t
- N_i is the set of all j such that A_i is not independent of A_j
- $S_1 = S \cap N_i$ and $S_2 = S \setminus S_1$
- Now, we have

$$\begin{aligned} \Pr[A_i | \wedge_{j \in S} \overline{A_j}] &= \Pr[A_i | \wedge_{j \in S_1} \overline{A_j}, \wedge_{j \in S_2} \overline{A_j}] \\ &= \frac{\Pr[A_i, \wedge_{j \in S_1} | \wedge_{j \in S_2} \overline{A_j}]}{\Pr[\wedge_{j \in S_1} \overline{A_j} | \wedge_{j \in S_2} \overline{A_j}]} \end{aligned}$$

• Let E_1 be the numerator and E_2 be the denominator

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Proof of the Technical Lemma

• We have:

$$E_1 \leqslant \Pr[A_i | \wedge_{j \in S_2} \overline{A_j}] = \Pr[A_i]$$

 $\leqslant x_i \prod_{j \in N_i} (1 - x_j) \leqslant x_i \prod_{j \in S_1} (1 - x_j)$

$$\begin{split} E_2 &= \prod_{\ell \in [k]} \Pr[\overline{A_{j_{\ell}}}| \wedge_{\ell' < \ell} \overline{A_{j_{\ell'}}}, \wedge_{j \in S_2} \overline{A_j}] \\ &= \prod_{\ell \in [k]} \left(1 - \Pr[\overline{A_{j_{\ell}}}| \wedge_{\ell' < \ell} \overline{A_{j_{\ell'}}}, \wedge_{j \in S_2} \overline{A_j}] \right) \\ &\geqslant \prod_{\ell \in [k]} \left(1 - x_{j_{\ell}} \right) = \prod_{j \in S_1} \left(1 - x_j \right) \end{split}$$

• Therefore, $E_1/E_2 \leq x_i$

 $vbl(A_i)$ represents the variable on which even A_i depends on

function Seq_LLL($\mathcal{X} = \{X_1, \dots, X_m\}, \mathcal{A} = \{A_1, \dots, A_n\}$) $\mathcal{X} \leftarrow \text{Random Evaluation}$ while $\exists i \text{ s.t. } A_i \text{ is satisfied do}$ Pick arbitrary A_i that is satisfied $\mathcal{X}_{vbl(\mathcal{A}_i)} \leftarrow \text{Random Evaluation}$ end while Output \mathcal{X} end function

Theorem

Suppose there exists a mapping $x: A \to (0, 1)$ such that, for all $i \in [n]$, we have $\Pr[A_i] \leq x_i \prod_{j \in N_i} (1 - x_j)$. Then the expected number of times sequential Moser-Tardos samples the event A_i is at most $x_i/(1 - x_i)$ and, hence, the expected number of execution of the inner loop is at most $\sum_{i \in [n]} x_i/(1 - x_i)$.

```
function Parallel LLL(\mathcal{X}, \mathcal{A})
     \mathcal{X} \leftarrow \mathsf{Random} Evaluation
     while \exists i \text{ s.t. } A_i \text{ is satisfied } do
          Let S be a maximal independent set in the dependency
graph restricted to satisfied A_is
          \mathcal{X}_{\mathsf{vbl}(A_{\mathsf{S}})} \leftarrow \mathsf{Random Evaluation}
     end while
     Output \mathcal{X}
end function
```

Theorem

Suppose there exists an $\varepsilon > 0$ and a mapping $x: \mathcal{A} \to (0, 1)$ such that $\Pr[A_i] \leq (1 - \varepsilon) x_i \prod_{j \in N_i} (1 - x_j)$. The expected number of inner loops before all events in \mathcal{A} are avoided is at most $O\left(\frac{1}{\varepsilon}\sum_{i \in [n]} \frac{x_i}{1-x_i}\right)$.

◆□→ ◆注→ ◆注→